Molecular Dynamics Simulation of Heat Conduction in Si Thin Films Induced by Ultrafast Laser Heating

نویسندگان

  • Yu Zou
  • Xiulan Huai
  • Zhixiong Guo
چکیده

Molecular dynamics simulations are carried out to study the thermal and mechanical phenomena of ultra-high heat flux conduction induced by ultrafast laser heating in thin Si films. Nanoscale Si films with various depths in heat flux direction are treated as a semi-infinite model for the study of ultrafast heat conduction. A distribution of internal heat source is applied to simulate the absorption of the laser energy in films and the induced temperature distribution. Stress distribution and the evolution of the displacement are calculated. Thermal waves are observed from the development of temperature distribution in the heat flux direction, though the average temperature of the simulated Si films increases monotonically. The average stress shows periodic oscillations. The time development of strain has the same trend as the average stress, and the net heat flux shows the same trend as the stress at different depths of the Si films in the direction of heat flux. This reveals a close relationship between stress and net heat flux in the Si films in the process of ultrafast laser heating.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular dynamics simulation of heat conduction in Si nano-films induced by ultrafast laser heating

a r t i c l e i n f o Molecular dynamics simulations are carried out to study the thermal and mechanical phenomena of heat conduction induced by ultrafast laser heating of nanoscale Si films. A distribution of internal heat source obeying Beer–Lambda law is applied to model the laser energy deposition in the film and to calculate the induced temperature and stress distributions. Thermal waves a...

متن کامل

Simulation of Fabrication toward High Quality Thin Films for Robotic Applications by Ionized Cluster Beam Deposition

The most commonly used method for the production of thin films is based on deposition of atoms or molecules onto a solid surface. One of the suitable method is to produce high quality metallic, semiconductor and organic thin film is Ionized cluster beam deposition (ICBD), which are used in electronic, robotic, optical, optoelectronic devices. Many important factors such as cluster size, cluster...

متن کامل

Pulsed Laser-Induced Rapid Surface Cooling and Amorphization

In this work, hybrid atomistic-macroscale simulation is conducted to explore the crystallization and amorphization of Si surface in the situation of fast melting and solidification induced by ultrafast laser heating and heat conduction. Our work is focused on investigating the relationship between the amorphization threshold (Ec) and the laser pulse width (tg). An empirical correlation Ec 1⁄4 4...

متن کامل

Heat Transfer Across Metal-Dielectric Interfaces During Ultrafast-Laser Heating

Heat transfer across metal-dielectric interfaces involves transport of electrons and phonons accomplished either by coupling between phonons in metal and dielectric or by coupling between electrons in metal and phonons in dielectric. In this work, we investigate heat transfer across metal-dielectric interfaces during ultrafast-laser heating of thin metal films coated on dielectric substrates. B...

متن کامل

Optical and Nonlinear Optical Response of Light Sensor Thin Films

For potential ultrafast optical sensor application, both VO2 thin films and nanocomposite crystal-Si enriched SiO2 thin films grown on fused quartz substrates were successfully prepared using pulsed laser deposition (PLD) and RF co-sputtering techniques. In photoluminescence (PL) measurement c-Si/SiO2 film contains nanoparticles of crystal Si exhibits strong red emission with the band maximum r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012